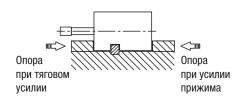
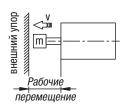
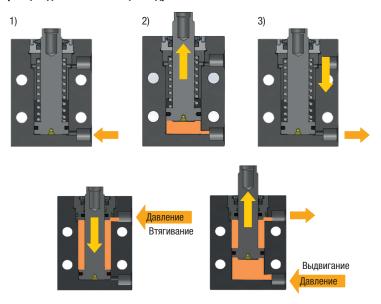

Технические данные:


Допустимая поперечная сила при выдвинутом штоке поршня:

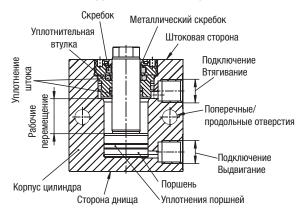
Необходимо максимально предотвратить воздействие поперечных сил на блочные цилиндры, чтобы гарантировать герметичность и продолжительный срок службы направляющих поршня и штока. При длине хода до 50 мм не должна превышаться поперечная сила 3 % от номинального усилия цилиндра. При удлинении хода поперечные силы должны уменьшатся в направлении 0 %.


Опора блочного цилиндра:

Если резьбовое соединение выполняется перпендикулярно оси цилиндра, необходимо установить опору для блочного цилиндра. При использовании напорного цилиндра опора устанавливается на стороне днища, при использовании тягового цилиндра — на стороне штока (см. изображение). В корпусе блочного цилиндра по умолчанию выполнены поперечные пазы, которые можно использовать для создания опоры. Для этого на прикручиваемую поверхность устанавливается призматическая шпонка, которая принимает усилие прижима или тяговое усилие.


Допустимая динамическая нагрузка при ходе поршня вперед:

По умолчанию демпфирование конечного положения в цилиндрах блока не устанавливается. Посредством хода вперед поршень прижимает прикрепленную массу к уплотнительной втулке блок-цилиндра с неснижаемой скоростью хода. Уплотнительная втулка действует как упор в цилиндре. В случае ее перегрузки функциональность цилиндра блока будет нарушена. Этой проблемы можно избежать, всегда имея в наличии внешний упор для поршня блок-цилиндра (см. рисунок).



v = скорость рабочего хода m = прикрепленная масса

Принцип действия блок-цилиндра:

Конструкция блок-цилиндра:

